Abstract

Purpose: To assess the current status of in-vivo use of monoclonal antibodies for treating cancer.

Data Identification: Publications appearing between 1980 and 1988 were identified by computer searches using MEDLINE and CANCERLIT, by reviewing the table of contents of recently published journals, and by searching bibliographies of identified books and articles.

Study Selection: More than 700 articles, including peerreviewed articles and book chapters, were identified and selected for analysis.

Data Extraction: The literature was reviewed and 235 articles were selected as relevant and representative of the current issues and future applications for in-vivo monoclonal antibodies for cancer therapy and of the toxicity and efficacy which has been associated with clinical trials.

Results of Data Syntheses: Approaches include using antibody alone (interacting with complement or effector cells or binding directly with certain cell receptors) and immunoconjugates (antibody coupled to radioisotopes, drugs, toxins, or other biologicals). Most experience has been with murine antibodies. Trials of antibody alone and radiolabeled antibodies have confirmed the feasibility of this approach and the in-vivo trafficking of antibodies to tumor cells. However, tumor cell heterogeneity, lack of cytotoxicity, and the development of human antimouse antibodies have limited clinical efficacy. Although the immunoconjugates are very promising, heterogeneity and the antimouse immune response have hampered this approach as has the additional challenge of chemically or genetically coupling antibody to cytotoxic agents.

Conclusions: As a therapeutic modality, monoclonal antibodies are still promising but their general use will be delayed for several years. New approaches using human antibodies and reducing the human antiglobulin response should facilitate treatment.
In patients with rheumatoid arthritis, bDMARD therapy was not associated with malignant neoplasms
Annals of Internal Medicine; 168 (4): JC23

Review: In patients with a first VTE, extended testing for undiagnosed cancer does not reduce mortality
Annals of Internal Medicine; 167 (12): JC64

Prostate Cancer
Annals of Internal Medicine; 163 (11): ITC1

Care of the Adult Cancer Survivor
Annals of Internal Medicine; 158 (11): ITC6-1

Hematology/Oncology

Evaluation of intracavitary carboplatin chemotherapy for treatment of pleural carcinomatosis in cats: a retrospective study of eight cases.

Potential application of Leishmania tarentolae as an alternative platform for antibody expression.

PubMed Articles

Evaluation of intracavitary carboplatin chemotherapy for treatment of pleural carcinomatosis in cats: a retrospective study of eight cases.

Potential application of Leishmania tarentolae as an alternative platform for antibody expression.
Cancer is clever. The transformed cancer cells evade the immune system through biochemical camouflage. (3) Immunotherapy (monoclonal antibodies and cancer vaccines) can make cancer cells visible to the natural immune system by taking advantage of molecular markers selectively present on cancer cells only. (4) Monoclonal antibodies, engineered in the laboratory and produced either in mice or through advanced hybridoma technology in humanized or chimeric forms, mimic the natural antibodies of the body. (5) MAbs generally fight cancer in one of three ways. In addition to re-targeting cancer cells

Monoclonal antibodies are used to treat many diseases, including some types of cancer. To make a monoclonal antibody, researchers first have to identify the cell antigen to attack. For cancer, this is not always easy, and so far mAbs have proven to be more useful against some cancers than others. Over the past couple of decades, the US Food and Drug Administration (FDA) has approved more than a dozen mAbs to treat certain cancers. As researchers have found